Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A data driven approach for real-world vehicle energy consumption prediction

2024-04-09
2024-01-2870
Accurately predicting real-world vehicle energy consumption is essential for optimizing vehicle designs, enhancing energy efficiency, and developing effective energy management strategies. This paper presents a data-driven approach that utilizes machine learning techniques and a comprehensive dataset of vehicle parameters and environmental factors to create precise energy consumption prediction models. The methodology involves recording real-world vehicle data using data loggers to extract information from the CAN bus systems for ICE and hybrid electric, as well as hydrogen and battery fuel cell vehicles. Data cleaning and cycle-based analysis are employed to process the dataset for accurate energy consumption prediction. This includes cycle detection and analysis using methods from statistics and signal processing, and then pattern recognition based on these metrics.
Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Technical Paper

Achieving An Affordable Low Emission Steel Vehicle; An Economic Assessment of the ULSAB-AVC Program Design

2002-03-04
2002-01-0361
Vehicle weight reduction, reduced costs and improved safety performance are the main driving forces behind material selection for automotive applications. These goals are conflicting in nature and solutions will be realized by innovative design, advanced material processing and advanced materials. Advanced high strength steels are engineered materials that provide a remarkable combination of formability, strength, ductility, durability, strain-rate sensitivity and strain hardening characteristics essential to meeting the goals of automotive design. These characteristics act as enablers to cost- and mass-effective solutions. The ULSAB-AVC program demonstrates a solution to these conflicting goals and the advantages that are possible with the utilization of the advance high strength steels and provides a prediction of the material content of future body structures.
Technical Paper

Achieving Design Target in the Presence of Functional Coupling

2007-04-16
2007-01-1208
The primary objective of design is to achieve the target value of its function. While principles and techniques of Robust Design address the issue of achieving target values in the presence of different types of variations and disturbances, there exists a unique challenge in achieving design targets when multiple response functions are interrelated. In order to overcome the challenge, we must avoid functional couplings and obtain the interrelationship structure as flexible as possible. In the Axiomatic Design process, such interrelationships are represented by coupling terms in a design matrix. From the targeting aspect of design, it is important to achieve a desirable design matrix structure to, first, avoid any functional coupling in a design matrix and, secondly, maximize allowable sequences of adjusting DPs.
Technical Paper

Acoustic Performance Prediction of Micro-Perforated Panels Using Computational Fluid Dynamics and Finite Element Analysis

2013-05-13
2013-01-2000
In recent years, interest in microperforated panels (MPPs) has been growing in the automotive industry and elsewhere. Acoustic performance prediction is an important step toward understanding and designing MPPs. This paper outlines a start-to-finish procedure to predict the transfer impedance of a particular MPP based on its hole geometry and to further use this information in a simple plane wave application. A computational fluid dynamics (CFD) approach was used to calculate the impedance of the MPP and the results compared to impedance tube and flow resistance measurements. The transfer impedance results were then used to create a computationally efficient acoustic finite element (FE) model. The results of the acoustic FE model were also compared to impedance tube measurements.
Journal Article

Acoustically Absorbing Lightweight Thermoplastic Honeycomb Panels

2017-06-05
2017-01-1813
The aerospace industry has employed sandwich composite panels (stiff skins and lightweight cores) for over fifty years. It is a very efficient structure for rigidity per unit weight. For the automobile industry, we have developed novel thermoplastic composite panels that may be heated and shaped by compression molding or thermoforming with cycle times commensurate with automotive manufacturing line build rates. These panels are also readily recycled at the end of their service life. As vehicles become lighter to meet carbon dioxide emission targets, it becomes more challenging to maintain the same level of quietness in the vehicle interior. Panels with interconnected honeycomb cells and perforations in one skin have been developed to absorb specific noise frequencies. The absorption results from a combination and interaction of Helmholtz and quarter wave resonators.
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

Advanced analytical methods for the study of lubricant-derived ash and associated impacts on engine aftertreatment components

2019-12-19
2019-01-2293
Catalytic and non-catalytic engine aftertreatment components, such as the diesel oxidation catalyst (DOC), selective catalytic reduction on filter (SCRF), the gasoline particulate filter (GPF) and the diesel particulate filter (DPF) are complex, multifunctional emissions control technologies that are robustly designed for extended use in harsh automotive exhaust environments. Over the useful component lifetime, lubricant-derived inorganic and incombustible ash accumulates in and/or on the surface of the aforementioned aftertreatment components, resulting in degraded performance and other potential problems. In order to better understand effects of ash in such components, a multiscale analytical approach is necessary, requiring a variety of experimental tools.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
Technical Paper

Air-Fuel Ratio Measurement Diagnostics During Cranking and Startup in a Port-Fuel-Injected Spark-Ignition Engine

2004-06-08
2004-01-1915
Cranking and startup fuel control has become increasingly important due to ever tightening emission requirements. Additionally, engine-off strategies during idle will require substantially more engine startup events with the associated need for very clean starts. Thus, knowledge of an engine's Air-Fuel Ratio (AFR) during its early cycles is necessary in order to optimize cranking and startup fueling. This paper examines and compares two methods of measuring an engine's AFR during engine startup (approximately the first second of operation); an in-cylinder technique using a Fast Flame Ionization Detector (FFID) and the conventional exhaust based Universal Exhaust Gas Oxygen (UEGO) sensor method. Engine starts using a Ford Zetec engine were performed at three different temperatures (0, 20 and 90 C) as well as different initial engine starting positions.
Technical Paper

Aircraft In Situ Validation of Hydrometeors and Icing Conditions Inferred by Ground-based NEXRAD Polarimetric Radar

2015-06-15
2015-01-2152
MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars* for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated campaign of in situ flights in winter storms. During the month of February in 2012 and 2013, the Convair-580 aircraft operated by the National Research Council of Canada was used for in situ validation of snowstorm characteristics under simultaneous observation by NEXRAD radars in Cleveland, Ohio and Buffalo, New York. The most anisotropic and easily distinguished winter targets to dual pol radar are ice crystals.
Technical Paper

Alcohol Fueled Heavy Duty Vehicles Using Clean, High Efficiency Engines

2010-10-25
2010-01-2199
Non-petroleum based liquid fuels are essential for reducing oil dependence and greenhouse gas generation. Increased substitution of alcohol fuel for petroleum based fuels could be achieved by 1) use in high efficiency spark ignition engines that are employed for heavy duty as well as light duty operation and 2) use of methanol as well as ethanol. Methanol is the liquid fuel that is most efficiently produced from thermo-chemical gasification of coal, natural gas, waste or biomass. Ethanol can also be produced by this process but at lower efficiency and higher cost. Coal derived methanol is in limited initial use as a transportation fuel in China. Methanol could potentially be produced from natural gas at an economically competitive fuel costs, and with essentially the same greenhouse gas impact as gasoline. Waste derived methanol could also be an affordable low carbon fuel.
Technical Paper

Alternative Tooling Technologies for Low Volume Stamping

1999-09-28
1999-01-3216
Low volume manufacturing has become increasingly important for the automotive industry. Globalization trends have led automakers and their suppliers to operate in developing regions where minimum efficient scales can not always be achieved. With proper maintenance, standard cast iron stamping tools can be used to produce millions of parts, but require large investments. Thus at high production volumes, the impact of the tooling investment on individual piece costs is minimized. However, at low volumes there is a substantial cost penalty. In light of the trends towards localized manufacturing and relatively low demands in some developing markets, low cost stamping tools are needed. Several alternate tooling technologies exist, each of which require significantly lower initial investments, but suffer from greatly reduced tool lives. However, the use of these technologies at intermediate to high volumes requires multiple tool sets thus eliminating their cost advantage.
Technical Paper

An Adaptive Air/Fuel Ratio Controller for SI Engine Throttle Transients

1999-03-01
1999-01-0552
An adaptive air/fuel ratio controller for SI engine throttle transient was developed. The scheme is based on an event- based, single- parameter fuel dynamics model. A least- square- error algorithm with an active forgetting factor was used for parameter identifications. A one- step- look- ahead controller was designed to maintain the desired air/fuel ratio by canceling the fuel dynamics with the controller setting updated adaptively according to the identified parameters. When implemented on a Ford Ztech engine and tested under a set of throttle- transient operations, the adaptive controller learned quickly and performed well.
Technical Paper

An Analysis of Ambient Air Entrainment into Split Injection D.I. Gasoline Spray by LIF-PIV Technique

2002-10-21
2002-01-2662
Effects of split injection, with a relatively short time interval between the two sprays, on the spray development process, and the air entrainment into the spray, were investigated by using laser induced fluorescence and particle image velocimetry (LIF-PIV) techniques. The velocities of the spray and the ambient air were measured. The cumulative mass of the ambient air entrained into the spray was calculated by using the entrainment velocity normal to the spray boundary. The vortex structure of the spray, formed around the leading edge of the spray, showed a true rotating flow motion at low ambient pressures of 0.1 MPa, whereas at 0.4 MPa, it was not a true rotating flow, but a phenomenon of the small droplets separating from the leading edge of the spray and falling behind, due to air resistance. The development processes of the 2nd spray were considerably different from that of the 1st spray because the 2nd spray was injected into the flow fields formed by the 1st spray.
Technical Paper

An Approach on Modeling for Functional Development of Automobile

2000-03-06
2000-01-0123
An approach of modeling is put forward for automobile product development, and a concept of a functional model is proposed in this paper. Functional models of mechanical, electrical and fluid systems of single degree of freedom are introduced. A wiper system and a power train system are modeled using this approach, and hierarchical functional models of these systems are presented. Simulation result with the hierarchical functional model is compared with test result using an actual power train system of passenger car in order to verify validity and usefulness of the proposed approach.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Technical Paper

An EVA Mission Planning Tool based on Metabolic Cost Optimization

2009-07-12
2009-01-2562
An extravehicular activity (EVA) path-planning and navigation tool, called the Mission Planner, has been developed to assist with pre-mission planning, scenario simulation, real-time navigation, and contingency replanning during astronaut EVAs, The Mission Planner calculates the most efficient path between user-specified waypoints. Efficiency is based on an exploration cost algorithm, which is a function of the estimated astronaut metabolic rate. Selection of waypoints and visualization of the generated path are realized within a 3D mapping interface through terrain elevation models. The Mission Planner is also capable of computing the most efficient path back home from any point along the path.
Technical Paper

An Evaluation of Multiplexing System for Automotive Distributed Control

1991-02-01
910718
On board multiplexing communication system is regarded as a necessary technology for the future of electronic system in automobiles. Many companies are developing multiplexing systems and the ISO and SAE are active in establishing standards for communication protocols. The proposed communication protocol specifications have different specifications. Consequently, no compatible evaluation standards existed, and it was difficult to compare one protocol to another. Therefore, to assist the standardization activities of the IS0 and SAE, we have developed an evaluation method for distributed multiplexed communication systems and evaluated each of the proposed protocols using this method. These evaluations were performed from the point of view of the future users of these systems. In this paper we present the results of the experiments on distributed multiplexed communication systems each of which consists of communication IC and the proposed physical layer.
Technical Paper

An Experimental Investigation on Air-Fuel Mixture Formation Inside a Low-Pressure Direct Injection Stratified Charge Rotary Engine

1993-03-01
930678
Stratified charge engines have been getting attention for the drastic improvement in thermal efficiency at low-load region. There have been researchers on the two types of engines-the high pressure direct injection stratified charge type in which fuel is supplied directly at high pressure into its combustion chamber right before ignition timings, and the low pressure direct injection stratified charge type in which fuel is injected directly into its cylinder while the cylinder pressure is comparatively low[ 1- 3]. Rotary engines have higher freedom than reciprocating engines in terms of equipping direct fuel injection devices, since their combustion chambers rotate along the rotor housing. The fuel supply units, therefore, need not be exposed to high temperature combustion gas.
X